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ABSTRACT

For decades, the U. S. Navy has been engaged in the development of underwater acoustic propagation
models to aid in the design and effective use of underwater sonar systems.  Much of the expertise created in
this development is applicable (directly or by modification) to challenges associated with the use of
infrasonic arrays to monitor CTBT compliance.  We will report on the results of the modification and
adaptation of a parabolic-equation underwater propagation model to predict and analyze acoustic-gravity
wave signals in both a range-independent and a range-dependent atmosphere.  Examples are given that
include the effects of range-dependent winds on signal strength for the case of an airborne explosive source
and a ground-based infrasonic receiver.  Frequencies of interest are in the band from 0.02 to 10 Hz, and
ranges of interest are 1000 km or less.
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1. Introduction

The issues relating to infrasonic propagation in the atmosphere, although long standing, have remained
relatively unexplored within the acoustic community.  The subject has however acquired renewed interest
due to the Comprehensive Test Ban Treaty (CTBT) [1].  Infrasound monitoring is one of the main tools
for detecting distant nuclear explosions.   The detected signals are the low frequency components (roughly
between 0.02 to 10 Hz) of the shock wave produced by an atmospheric nuclear burst. They can be detected
at ranges up to a few thousand kilometers by virtue of the waveguide created by ground reflections and
refraction in the atmosphere. The problem is essentially that of propagation in a range dependent
environment, similar to that occurring in other branches of acoustics. In particular, attention must be given
to upper (>10 km) atmospheric winds, the speeds of which can be a significant fraction of the acoustic
propagating sound speed [2].

Modeling infrasonic propagation in a realistic environment would provide a useful tool for the test ban
treaty monitoring community.  However there appears to be a lack of ready-to-use models capable of high
fidelity modeling.  By high fidelity modeling we mean modeling the propagation of the acoustic energy in
an environment which includes all of the nuances and intricacies of the real environment.  This would
include the range and altitude dependent sound speed due to temperature and density variations, the range
and altitude dependent atmospheric winds as well as the range dependent terrain over which the acoustic
field propagates.  Not only would this range dependent terrain contain variations in such things as density
and porosity but also changes in terrain type.  Since infrasonic propagation occurs over such large
distances, the type of terrain over which the signal propagates could change for example from grassland to
forests to mountains, and finally across water.  The propagation model should be capable of not only
maintaining the correct amplitude (i.e. conserve energy) of the signal but also maintaining the correct phase
as it propagates the signal in this complex and dynamic environment.

The underwater acoustic community has, over the years, developed propagation models that are capable of
determining the correct amplitude and phase of the acoustic field in very sophisticated and complex
environments.  These underwater environments are just as complex and dynamic as the atmospheric
environments. The propagation models developed are based on a variety of mathematical and physical
concepts.  The most familiar are those models that solve the reduced wave equation or Helmholtz equation
(thus implicitly assuming a point harmonic source i.e. operating in the frequency domain).  Among them
are; the normal mode solution to the Helmholtz equation; reduction of the Helmholtz equation to a
parabolic equation (PE methods); wavenumber integration methods and ray tracing techniques.  They each
have their strong and weak points.  The nearly universal assumption made by each model is that azimuthal
coupling is assumed unimportant.  The consequence is that the models operate in cylindrical coordinates,
assume azimuthal symmetry (i.e. ignore azimuth), which results in a 2-dimensional (r, z) model. When the
environment is weakly range-dependent (i.e. the environment does not change rapidly over a short-range
interval) the normal mode models give adequate results.  If however the environment changes rapidly with
range, resulting in mode coupling (energy transferring between modes) then PE models and some
wavenumber integration models are more appropriate, since they are marching algorithms and they
naturally include the ability to handle range dependence.

This paper is concerned with taking a model, which is widely known to the underwater acoustics
community as the split-step Pade´ solution of the Finite Element Parabolic Equation (EFEPE) model
developed by Collins [3], and adapting it to infrasonic atmospheric propagation.  There are PE [4], normal
mode and FFP-based [5,6] atmospheric propagation models in the community, with some of them
developed specifically for outdoor propagation, such as that of White and Gilbert [4], where a range
independent case was analyzed.  Other models have their origin in underwater acoustics. In particular,
Franke and Swenson [5] and Gudesen [6] have taken well-known underwater acoustic propagation models
(FFP and SAFARI) and adapted them to atmospheric propagation.  However, none have addressed the
infrasonic frequency regime.  In this work, several important enhancements to the EFEPE model were
incorporated, such as the altitude and range dependent atmospheric winds, as well as a starter appropriate
for a point source over a plane reactive interface.  The theory behind these additions as well as the theory for
PE will be included.  Finally, both frequency domain and time domain results will be presented.  At the
lower end of the frequency range of interest, acoustic gravity waves may play a role. Since the basic
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component of the current model (EFEPE) does not account for acoustic gravity waves, they are not included
in the current adaptation. Their inclusions will be the subject of future work.

2. Parabolic Equation Theory

The following description is based on the work by Collins [3].  For a more in-depth description, the reader
is directed to the original body of work.  Recently Lingevitch et.al. [7] has developed an acousto-gravity
PE.  We start with the Helmholtz equation in cylindrical coordinates and assume azimuthal symmetry.
Where z is the height above the air-ground interface and r is the horizontal distance from the source located
at r=0, z=z0.  We assume that kr >> 1 and remove the spreading factor r-1/2 from the acoustic pressure p.
The PE method is by definition a boundary value problem, thereby requiring that we provide the starting
field.   In addition, the boundary conditions at the air-land interface (if allowing for geo-acoustic bottom and
thus bottom penetration, at the end of the numerical grid) and at the top of the numerical grid (maximum
height of the problem).  Range dependency is made up through many different range independent regions.
In each range-independent region, the acoustic pressure satisfies the farfield equation,
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Where ρ is the density,     k = (1+ i ) / c  is the complex wavenumber,     = (40 log10 e)−1

β is the attenuation (in dB per wavelength), c is the sound speed, and ω  is the circular frequency.  Note
that Eq. (1) does not account for gravity waves, this will be handled at a later time.  Since c, r, and β
depend only on z, Eq. (1) factors as follows:
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where c0 is the reference sound speed and k0 = ω /c0.  The following approximation is valid if the outgoing
component of p dominates the incoming component:
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Removing the factor exp (ik0r) from p, we obtain

    

∂p

∂r
= ik0 −1+ 1 + X( )p .                                                   (5)

To obtain the split-step Pade´ solution, Eq. (5) is solved analytically before applying a Pade´
approximation.  Given the field over z at an arbitrary range r, the solution of Eq. (5) at the range r+∆r is

    
p(r + ∆r) = exp[i −1+ 1 + X( )]p(r)                             (6)

where =k0∆r.  Now imposing a Pade´ approximation to the RHS of Eq. (6) we obtain,



21st Seismic Research Symposium

 162

    
exp[i (−1+ 1 + X )] ≅ 1+

aj, n X

1 + bj, n Xj=1

n

∑ ,        (7)

Substituting Eq. (7) into Eq. (6), we obtain the split-step Pade´ solution,
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X
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The depth operator is discretized-using finite-differences.  The resulting matrices are tridiagonal.

3. Modification of the basic PE model

There are four major changes made to EFEPE resulting in the atmospheric version (Air-EFEPE).  First the
sound speed is complex through the entire vertical extent of the problem. Second, the starting field
incorporated is based on the reflection of a spherical wave from a locally reacting boundary.  Third, the
inclusion of altitude dependent atmospheric winds, and lastly a new bottom boundary condition is
imposed.  For an in depth discussion of each modification the reader is directed to a paper by Norton et.al.
[8].  However since the effect of wind is examined by an example, the method of including wind into the
model will be presented.

Atmospheric Winds

For the model under consideration, any environmental effect in the fluid mass (atmosphere) has to be
included through the index of refraction.  However, the wind is a directional phenomenon while temperature
(main parameter controlling the sound velocity) is a scalar. Therefore, wind speed cannot be simply added
to the local sound speed.  A more rigorous approach is required.  Nijs and Wapenaar [9] treated the wind
speed as a vector quantity resulting in a modified propagation wavenumber.  Assuming air to be an ideal
gas and sound propagation to be an adiabatic process, one can write, K= P0, where P0 is the static
pressure, and  =Cp/Cv  (the ratio of the specific heats).  With these assumptions, the wavenumber can be
rewritten.  Introducing the Mach vector m (which is altitude dependent), we have

    c
2 = P0 / 0       (9a)

    mx = wx / c , and     my = wy / c ,       (9b)

        k = / c ,       (9c)

    km = / c − mxkx − myk y.       (9d)

The local wind speed c incorporates the effects of temperature while m stands for the wind effect.  The first
variable is a scalar and the second is a vector. wx and wy denote the local wind speed.   The wavenumber k
of Eq. (9c) is now replaced by km of Eq. (9d).  Now a determination of kx and ky is required. kx and ky are the
horizontal components of the wavenumber in the x and y direction.  Since PE is a 2-Dimensional model
(range and altitude) kx and ky have the following description,
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where  is the angle that r makes to the x-axis.  The derivative of p with respect to z is performed using a
central difference stencil, while the derivative with respect to r utilizes a backward difference stencil, which
requires saving the pressure at the previous range.

To reduce the execution time, the model is parallelized via use of the “DOACROSS” commands
available on Silicon Graphics Incorporation (SGI) multi-processor platforms.

4. Examples

Two examples will be presented showing some of the capabilities of the model.  The first example shows a
time domain result for the propagation of the infrasonic pulse resulting from a nuclear explosion in the
atmosphere.  The environment for this case is very simple.  The sound speed is constant with height (300
m/s) and there are no winds.  The source location is at a height of 5 m with the receiver location at a height
of 1 m.  The model was run for 140 frequencies starting at a frequency of .05 Hz, with a frequency
increment of .05 Hz.  Initially each frequency had equal weighting.  A pressure signature commonly used to
investigate the excitation of infrasonic modes by nuclear explosions is the so-called Glasstone pulse [10]. It
represents the pressure history of the blast wave. It has the form
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and t is measured from the onset of the shock. U (*) is the Heaviside step function.   The parameter ∆pref

is the shock overpressure at a reference distance Rref from a 1KT burst in the standard atmosphere.  The
shock overpressure at a reference distance of 5.84 Λ0 ref, (where Λ0 ref = 256m) is 34mbar.  The spectral
amplitude for the Glasstone pulse is given by

                                                     AG( ) =
−i

2 i −
1
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2                                               (13)

For each frequency, since we are dealing with a cw model, weights determined from Eq. (13) were applied
to the output of Air-EFEPE.  The resulting time signal is then obtained via an inverse FFT.  Figure 1
depicts the comparison of the Air-EFEPE model along with the Glasstone pulse at a range of 1000km.
The widths of the two pulses are approximately the same as are the over pressure and role-off.  The main
difference is that the Glasstone pulse does not show the large over pressure excursion that the synthesized
signal does.  The reason for the difference was believed to be due to the fact that the analytic expression for
the Glasstone pulse knows nothing about the source receiver geometry or about the complex impedance of
the land.  Therefore, a simplified expression for the pressure near grazing, based on work by Attenborough
[11], was used to synthesize a signal.  This signal was compared to the Air-EFEPE result.  Figure 2
depicts the comparison. Note that the widths of the two signals are a better match than that shown in Fig.
1a.  The overpressure that occurs after the large negative excursion does not compare as well as the
Glasstone pulse did.  However there is an overpressure occurring prior to this negative excursion.  It is not
as large as the synthesized signal but this could be due to the fact that it is an approximate solution.
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Figure 1.  Comparison of the pulse generated by the Air-EFEPE model and the analytic expression for the
Glasstone pulse.

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

Relative Time (Sec)

Range 1000 km

 Air-EFEPE
 Analytic Approximation 

Figure 2. Comparison of the pulse generated by the Air-EFEPE model and the analytic approximation for
the pulse from Attenborough.

The second example depicts a frequency domain result.  This example is not meant to be realistic.  It is
used to show that range dependence is included for both sound speed and atmospheric winds.  The
environment initially consists of an isovelocity sound speed (330 m/s) from the ground to an altitude of
300 km.  A 5 Hz source is placed at 150 km.  Five separate cases were run.  For the first case the
environment did not change with range, or in other words this represents a range independent case.  This
case was run so that the results from the next four cases could be compared to this range independent
(baseline environment) environment.  Figure 3 depicts the result.
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Figure 3.  Contour plot of the acoustic field, altitude vs. range for the isovelocity sound speed.  Contour
levels are 30 to 150 dB in steps of 10 dB.

The sound speed varies with range for the second environment.  For this case the sound speed had a
minimum at 150 km, while the sound speed at the surface and at 300 km remains at 330 m/s. This
minimum becomes more extreme at each kilometer out to 10 km where the minimum is 180 m/s.  Beyond
10 km the minimum sound speed reverses until at 20 km the sound speed is once again isovelocity
(constant 330 m/s).  This results in a sound speed gradient that increases with range, to 10 km and then
reverses until at 20 km the gradient disappears.  The change in the minimum sound speed is 15 m/s at
every km.  See Fig. 4 for the resulting sound speed profiles.
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Figure 4a. Sound speed profiles for environment 2. Figure 4b. Contour plot of the acoustic field, altitude
vs. range for the 2nd environment (sound speed shown in Fig. 4a).  Contour levels are 30 to 150 dB in
steps of 10 dB.

Figure 4b depicts the intensity of the acoustic field (expressed in dB) versus altitude and range.  Notice that
compared to the isovelocity case (Fig. 3) the field is very focused.  This is the result of the sound speed
gradients.  From 10 km to 20 km the strengths of the gradients become less, resulting in a gradual
spreading of the acoustic field.
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The sound speed profiles used for the 3rd environment are depicted in Fig. 5a.  Now instead of having a
minimum at an altitude of 150 km there is a maximum.  At each kilometer in range, starting at 1km the
maximum increases at a rate of 15 m/s out to 10 km (Maximum sound speed is 480 m/s).  From 11 km to
20 km in range the maximum decreases by 15 m/s at each kilometer, until at 20 km the sound speed is
once again constant (330 m/s).  See Fig. 5a.
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Figure 5a. Sound speed profiles for environment 3. Figure 5b. Contour plot of the acoustic field, altitude
vs. range for the 3rd environment (sound speed shown in Fig. 5a).  Contour levels are 30 to 150 dB in
steps of 10 dB.

Figure 5b depicts the result for this environment.  Notice that this result is significantly different from the
last result and from the isovelocity result (Fig. 3).  The field is very focused and there appears to be some
symmetric structure out to 10 km.  This structure is due to the fact that the gradient increases only at
discrete ranges (and remaining constant until the next increase) and not continuously with range.  After 10
km the strengths of the gradients decrease, allowing the acoustic field to spread in height.

The next two environments consist of an isovelocity sound speed (330 m/s) with a range dependent
atmospheric wind field.  The wind speed profiles used for the 4th environment is depicted in Fig. 6a.  This
environment is similar to environment 2 (Fig. 4a) except the wind speed x-axis component (at 150 km
height) increases in the negative x direction. At each kilometer in range, starting at 1km the wind speed
increases at a rate of 15 m/s out to 10 km (Maximum wind speed is 150 m/s in the negative x direction).
From 11 km to 20 km in range the wind speed decreases by 15 m/s at each kilometer, until at 20 km the
wind speed is once again constant (0 m/s).  See Fig. 6a.
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Figure 6a. Wind speed profiles used in 4th environment. Figure 6b. Contour plot of the acoustic field,
altitude vs. range for the 4th environment (wind speed shown in Fig. 6a).  Contour levels are 30 to 150 dB
in steps of 10 dB.

Figure 6b depicts the intensity of the acoustic field (expressed in dB) versus altitude and range.  Notice that
compared to the results from first environment (Fig. 4b) the two are nearly identical.  The differences are
noticeable at the maximum range, where field has spread out more in height than when the sound speed
changed.  This result is not surprising, since the act of changing the local sound speed, results in a change
of the local wavenumber, where as including the wind field results in a direct change of the wavenumber
while not changing the sound speed.  Again we see that from 10 km to 20 km the strengths of the gradients
become less, resulting in a gradual spreading of the acoustic field.

The wind speed profiles used for the 5th environment is depicted in Fig. 7a.  This environment is similar
to environment 3 (Fig. 5a) except the wind speed x-axis component (at 150 km height) increases in the
positive x direction. At each kilometer in range, starting at 1km the wind speed increases at a rate of 15
m/s out to 10 km (Maximum wind speed is 150 m/s in the positive x direction).  From 11 km to 20 km
in range the wind speed decreases by 15 m/s at each kilometer, until at 20 km the wind speed is once again
constant (0 m/s).  See Fig. 7a.
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Figure 7a. Wind speed profiles used in 5th environment. Figure 7b. Contour plot of the acoustic field,
altitude vs. range for the 5th environment (wind speed shown in Fig. 7a).  Contour levels are 30 to 150 dB
in steps of 10 dB.
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Figure 7b depicts the intensity of the acoustic field (expressed in dB) versus altitude and range.  Notice that
compared to the results from 3rd environment (Fig. 5b) the two again are nearly identical.  Differences are
noticeable throughout the range of propagation.  The reason is again due to the fact that changing the local
sound speed, results in a change of the local wavenumber, where as including the wind field results in a
direct change of the wavenumber while not changing the sound speed.  It is apparent that the field is more
focused in range compared to Fig. 5b.

5. Concluding remarks

A prototype atmospheric acoustic propagation model for infrasonics has been introduced whose genesis is
in underwater acoustic propagation.  This prototype model includes range and altitude dependent
atmospheric winds, and accounts for attenuation in the atmosphere.  A starting field is incorporated based
on the reflection of a spherical wave from a locally reacting boundary, and lastly a new bottom boundary
condition appropriate for an air-ground interface is imposed. The inclusion of the gravity term in the wave
equation will be the subject of future work.
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