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ABSTRACT

We consider the problem of multivariate outlier testing for purposes of distinguishing seismic signals of
underground nuclear events from training samples based on non-nuclear seismic events when some of the
data are missing.  We first consider the case in which the training data follow a multivariate normal
distribution.  Suppose that such a training set of n observations based on k features is available but that
some of the observations are missing. The approach currently used in practice is to perform the outlier
testing using a generalized likelihood ratio test procedure based only on the data vectors with full data.
Critical values for this test are usually obtained using Hotelling's T2  distribution.  When large amounts of
data are missing, use of this strategy may lead to loss of valuable information.  An alternative procedure is
to incorporate all n of the data vectors using the EM algorithm to appropriately handle the missing data.  In
this case, the Hotelling's T2 procedure no longer applies, and resampling methods are used to find
appropriate critical regions.  We use simulation results and analysis related to seismic data to compare
these two strategies for dealing with missing data.

In some cases it may be best to model the non-nuclear events in the region using a mixture-of-normals
model (e.g. when the events come from a variety of sources or the data are substantially non-normal).   We
describe an EM-algorithm based procedure for using the modified likelihood ratio test to test for outliers
when the training data follow a mixture distribution and when some of the observations are missing.  In
this setting, we again use simulations and analysis of seismic data to compare the use of the EM algorithm
on the entire data set with the use of only the complete data vectors.  We also consider a new alternative to
the likelihood ratio test that provides a useful reduction in the computational complexity.
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OBJECTIVE

The objective of this research is to develop and implement statistical methodology for outlier testing when
some data are missing.  In particular we examine the use of the EM algorithm in the case of missing
observations and compare its use with that of only using those data vectors for which complete data are
available.

RESEARCH ACCOMPLISHED

BACKGROUND

Several authors have considered the problem of outlier testing for purposes of distinguishing seismic
signals of underground nuclear events from training samples based on non-nuclear seismic events such as
earthquakes, mining explosions, etc. Fisk, Gray, and McCartor (1996) considered the problem of using a
likelihood ratio test for detecting outliers from a multivariate normal (MVN) distribution fit to the training
data. They applied the method to a variety of seismic data sets and demonstrated excellent results.  Taylor
and Hartse (1997) also successfully applied this procedure to seismic data from the WMQ station in
western China.  These papers, however, require complete or non-missing data.  That is, if k features are
selected for use on a training sample of n events, then these results assume that all k n↔ observations are
available.  When some of the features for some of the events are missing, then the question arises
concerning the optimal method for analyzing the data in such a way as to make the best use of the available
data.  One common technique for dealing with this issue is to use only those events in the training sample
for which all k features were observed.  It should be noted that such a procedure can result in a substantial
loss of data and associated information.  For example, consider the case in which 25% of the data are
missing at random from a training sample of size n = 50 events.  If, for example, we want to use four
features, then the expected number of  events for which all four features are observed is 16.  Intuitively,
however, it seems that we should not “throw away” the partial data on the other 34 events.  In this research
we compare the use of the “complete vector” approach which uses only these 16 vectors of complete data
with the use of the Expectation-Maximization (EM) algorithm (see Dempster, Laird, and Rubin, 1977)
which attempts to make optimal use of all data observed.  These analysis strategies are compared via
detection probabilities.  Another problem can occur if there are no cases or only a very few cases in which
all k of the features are observed.  If the “complete-vector” strategy is used, then some key features may
need to be removed before analysis can be done.

In some cases it may be best to model the non-nuclear events in the region using a mixture-of-normals
model (e.g. when the events come from a variety of sources or the data are substantially non-normal).  In
this case, the training data can be considered to be a sample of size n from a mixture distribution whose
density is given by
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where m is the number of components in the mixture, gi i i( ; , )x Σ  is the MVN density associated with

the ith component, the pi, i = 1, …, m are the mixing proportions, and x is a d-dimensional vector of
feature variables.  Wang, Woodward, Gray, Wiechecki, and Sain (1997) developed a modified likelihood
ratio test that is applicable to the mixture and non-mixture settings and, in essence, requires no
distributional assumptions concerning the outlier distribution.  These authors demonstrated via
simulations that the modified likelihood ratio test can be used successfully for outlier detection when m is
known and at least some of the training data are labeled.  Sain, Gray, Woodward, and Fisk (1999) extend
these results to the case in which no data are labeled and in which the number of components in the
mixture is unknown.  They demonstrated their results using simulations similar to those of Wang, et al.
(1997) and showed little or no loss of power when no training data are unlabeled.  Sain, et al. (1999)
obtained excellent results using their procedure on actual seismic data from the Vogtland region near the
Czech-German border and from the WMQ station in western China.  Using the China data, the authors
demonstrated that a mixture model may be preferable to the use of a single multivariate model even when
there are not any identifiable groups of event types represented in the training data.

However, the mixture-model results described above also make the assumption that there is no missing
data (except for missing labels.)  That is, the assumption is made that all k features are observed on all of
the n events in the training sample.  Again, because of the fact that it is very common for the seismic data
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collected for events in a training sample to contain some missing data, it is important in this setting to
also consider the issue of optimal handling of missing feature data.  For further discussion of outlier testing
in the presence of missing data see Miller, Gray, and Woodward (1993), Miller, Woodward, Gray, Fisk,
and McCartor (1994), and Woodward, Sain, Gray, and Fisk (1999).

MODIFIED LIKELIHOOD RATIO TEST

The training sample is denoted by
X1, … , Xn  Π ,

and it is a sample of size n from the population ( Π ) of non-nuclear events in the region of interest.  A new
observation, X n+1 , is obtained, and given the training sample we wish to test the hypotheses

H0: X n+1  Π
H1: X n+1  Π .

The classical likelihood ratio test statistic is the ratio of the maximized likelihood functions under H0 and

H1.  We let L0( ) = ⊆
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the training sample X 1 ,…, X n from the mixture.  Wang, et al. (1997) and Sain, et al. (1999) used the

modified likelihood-ratio test statistic
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The usual likelihood ratio would have involved another factor in the denominator consisting of the
likelihood function associated with the outlier population.  However, we use the form in (2) because of the
fact that little is known about the outlier population from which we have only one observation, X n+1 . It is

easily seen in (2) that if X n+1  does not belong to Π , this will tend to make W smaller.  Hence the

rejection region is of the form W≤ W  for some W  picked to provide a level  test.  The null

distribution of W  has no known closed form in the case of a training sample from a multivariate normal or
a mixture of normals, so we use a bootstrap procedure (see Efron and Tibshirani, 1993) to approximate it.
The algorithm is given in Sain, et al. (1999).

A SIMPLIFIED TEST

As part of our research effort, we have considered an alternative approach, which is less computational than
the modified likelihood ratio testing procedure and is asymptotically equivalent to it  (see Wang, et al.,
1997).  Specifically, in the new approach we fit a density (mixture or non-mixture depending on the
situation) to the training data and estimate the parameters (using the EM algorithm if some data are

missing). We denote the estimated density as 
)
f .  We then simply evaluate this estimated density at the

potential outlier point, i.e. we find 
)
f n( )X +1 .  Obviously, the smaller the value of 

)
f n( )X +1 , the more

“outlier-like” the new event is.  In order to find the distribution of the density function under the null
hypothesis H 0 1:Xn+  Π , we use a bootstrap procedure analogous to that used for W.  This procedure is
much faster and avoids the necessity of calculating the likelihood function in the numerator of (2).
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THE EM ALGORITHM

The EM algorithm is a very general procedure for obtaining maximum likelihood estimates when some
data are missing, and it is applicable to the mixture-of-normals case considered here.  Actually, the EM
algorithm may be thought of as a formal procedure for performing the following intuitively appealing
approach to dealing with missing data:  (a)  estimate missing values using the current parameter estimates,
(b) revise parameter estimates using the available data and the estimates of the missing values,  and (c)
iterate on (a) and (b) until convergence of parameter estimates is obtained.

The EM algorithm is directly tied to maximizing the likelihood function.  As such, it is often not
necessary to actually estimate missing data values but rather is only necessary to estimate the sufficient
statistics (based on missing and available data) that are needed in the evaluation of the likelihood function.
The EM algorithm thus has two steps:  (1)  the expectation step (E-step) in which the conditional
expectation of the sufficient statistics given available data and the current estimates of the parameters are
calculated, and  (2) the maximization step (M-step) in which the log-likelihood function (based on sufficient
statistics calculated in Step 1) is maximized to give revised parameter estimates.  For more details
concerning the use of the EM algorithm in these settings, see Miller, et al. (1993, 1994), and Woodward,
et al. (1999).

SIMILATION RESULTS

Consider the situation in which the event in question is measured at three feature variables which we want
to simultaneously use in the outlier testing.  The question is whether it is preferable to do the outlier
testing:  (i) using only those data vectors in the training set for which all three features were observed, or
(ii) using all data vectors for which at least one of the three feature variables was observed.

Consider the case in which a training sample of size n = 40 is obtained from the multivariate normal
population with mean  µ and covariance Σ .  Further suppose that the new event comes from a population
that is multivariate normal with mean 0 covariance Σ 0 .  In Table 1 we show results for two separate

scenarios.  In the table we show the empirical powers based on 1000 replications.  We show results using
the modified likelihood ratio test and the simplified test based on 

)
f .  The first column of each table

corresponds to the case in which only complete data vectors are retained and the second column
corresponds to the case in which the EM algorithm is used on the complete data set consisting of all
observations for which at least one of the three features is available.  The rows in the table correspond to the
missing data scenarios in which the probability, pm , of a missing feature takes on the values 0 (i.e. there

is no missing data), .38, and .5 .  In the simulations each data item has a pm  probability of being declared
missing.  However, if all three features are declared missing then the procedure is repeated until at least one
of the observations is declared non-missing.  Using this procedure, the expected number of complete
vectors out of  the 40 observations in the data set is 10 and 6 for pm equal to .38 and .5 respectively.   For
the first column in Table 1, training samples of size indicated in parentheses (i.e. 40, 10, or 6) are
generated with no missing data.  This corresponds roughly to the situation in which the analysis is run
only on the vector observations with complete data.  The second column in the table corresponds to the
case in which all  observations, some of which may contain missing features, are analyzed using the EM
algorithm. The numbers given in the body of the table are empirical detection probabilities, i.e. they are
the proportion of the 1000 replications for which the outlier was detected.  The EM entry in the second
column of the first row is not given since there is no missing data, and obviously, in this case the EM
algorithm requires no iteration and would produce the results given in the first column of this row.
Additionally, in parentheses below the detection probabilities are given estimated false alarm rates.  That
is, in this case we generated the “outlier” from the population of the training data, i.e. MVN( , Σ),  and we
are interested in the proportion of times for which the test (incorrectly) detected an outlier.  The test in the
simulations is designed to have a false alarm rate of .05, so the empirical false alarm rates provide
information concerning whether the actual false alarm rate is near .05.  The standard error for detection
probabilities shown in this report is .016 while the standard error for the false alarm rates is .007.

From the left-hand column of the table it can be seen that, as would be expected, the presence of missing
data has reduced the detection probability both for the modified likelihood ratio test and the test based on)
f n( )X +1 .    Also, in the eight cases shown in the table for which a direct comparison can be made between
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the use of the EM algorithm and the use of only the complete vectors, the detection probabilities using the
EM-algorithm are always higher, and for pm =.5 the improvement is substantial.   It can also be seen that

the detection probabilities for the modified likelihood ratio test and the test based on 
)
f n( )X +1  are similar. It

should also be noted that the false alarm rate for both tests have a tendency to be elevated, especially for the
case of smaller sample sizes.  This phenomenon has been previously observed by Wang, et al. (1997) and
Sain, et al. (1999).

OUTLIER TESTING BASED ON WMQ DATA

We next consider the application of these outlier tests in settings dictated by actual seismic data.  In
particular we consider simulations based on data from the WMQ station in western China (see Hartse, et
al., 1997).  This distance corrected data consists of n = 134 events which are primarily earthquakes.  Data
is also available on a few nuclear events observed at WMQ.   Our analysis will be based on the three
features corresponding to log(Pg/Lg) ratios in the frequency bands 0.5-1, 1.5-3, and 4-8 Hz.  There is no
missing data on these three features in the data set that was analyzed.  Using the three features, a

multivariate normal fit to earthquake training data has mean )015.,016.,024.( ′−=EQ , where the

features are in the order 0.5-1, 1.5-3, and 4-8 Hz respectively, and covariance
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Additionally, the multivariate normal fit to the nuclear explosions has mean )679,.557,.035(. ′  and
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The explosion population is so far removed from the training data that detection is essentially assured
using any reasonable approach.  We follow the approach of Sain, et al. (1999) and Woodward, et al. (1999)
and artificially move the outlier population closer to the training data.  Specifically, in the simulations
given here we consider the outlier population to be multivariate normal with mean

)358,.337,.015(.0 ′= and with covariance 0Σ given above.

In Table 2 we report the results of a simulation study based on the multivariate normal distribution fit to
the earthquake training data with the outlier population being the multivariate normal distribution with

mean and covariance given by 0  and 0Σ above.  While there was no missing data in the original data set

analyzed by Sain, et al. (1999), we are able to ascertain the effect of missing data in this situation by
simulating training samples from the distribution fit to the earthquake data and randomly assigning some of
the observations to be missing.  In Table 2 we give the empirical detection probabilities based on 1000
replications with B = 199  in the bootstrap-based outlier test.  We consider three training sample sizes, n =
50, 100, and 150, and we again consider the cases in which pm takes on the values 0, .38, and .5.  We give
separate tables for the modified likelihood ratio test and the simplified test based on  

)
f n( )X +1 .  In the table

we see that in every case, the use of the EM algorithm improves the detection probability over the use of
only the complete vectors.  Not surprisingly, this improvement is more apparent when the percent missing
is higher and when the original sample size is smaller.  As in Table 1, it can be seen that the results using
the test based on the modified likelihood ratio and those using the test based on 

)
f n( )X +1  are similar.  Of

particular interest is the fact that for n = 100 and n = 150, the use of the EM algorithm with pm = .38 and
pm  = .50  yields detection probabilities very similar to those given in the first row of the table for the case
in which no data are missing.  It can also be seen that the observed false alarm rates were somewhat
elevated in some cases.  Current investigation by these authors deals with understanding and properly
adjusting for these somewhat elevated levels.



21st Seismic Research Symposium

 679

APPLICATION TO THE MIXTURE MODEL

We briefly consider the use of the EM algorithm in the mixture model for the case in which the training

data are from the model in (1) with m p p= = =2 051 2, .  and in which )(1 xf and  )(2 xf are multivariate

normal densities with
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Additionally, we assume that the outlier population is MVN ),( 0 I where )2,0(0 ′=  and I is the 2 x 2

identity matrix.  We consider the cases pm = 0, 1/3, and .50.  In Table 3 we show the results of the outlier
test for the case in which, as before, the results are based on 1000 repetitions.  The results shown here are
for the simplified test based on 

)
f n( )X +1 .  In the simulations, we let AIC select the number of components

with the restriction that m = 1 2 or .  (See Sain, et al., 1999).

In the table it can be seen that for the pm = .33 case, the use of the EM algorithm resulted in a marginal
decrease in detection probability whereas in the case of  pm = 0.5 there was a marked improvement using
the EM algorithm.  Other simulations (not shown here) also show that observed false alarm rates may be
high, especially in the cases of smaller number of available data values.  Our experience has shown that
much care must be exercised in applying the EM algorithm in this setting.  It is a computationally difficult
problem to require estimation of the number of components and parameters of each component in the case
in which a fairly substantial amount of data are missing.  Further investigation in this area is needed.

CONCLUSIONS AND RECOMMENDATIONS

Our results indicate that when the training data can be reasonably modeled as a multivariate normal, then
the use of all available data using the EM algorithm provides improved detection probability over that
obtained using only those data vectors for which we have complete data.  Our results also show that the use
of the simplified outlier test based on 

)
f n( )X +1  should be considered since it is computationally faster and

gives detection probability results similar to those obtained using the test based on the modified likelihood
ratio.  Initial results indicate that the use of the EM algorithm may be plausible when the training data can
be modeled as a mixture of normals, but further work is required in this area.  When the training data
cannot be reasonable well fit using a multivariate normal, possible modifications include using a mixture
approach in which it is assumed that the covariance matrices are equal or possibly using some sort of
nonparametric kernel density estimator.
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  Table 1.  Empirical Detection Probabilities for 2 Simulated Models

(a)  Training sample of size n = 40 from MVN(µ,Σ) where = ′( , , )0 0 0   and Σ =


�

�
�
�

�

↵

√
√
√

1 2 2

2 1 2

2 2 1

. .

. .

. .

       Outlier from MVN( )Σ,0  where 0 25 25 25= ′( . , . , . )  

       Modified Likelihood Ratio Test        Test based on )(ˆ
1+nXf

pm Complete
Vectors

  EM Complete
Vectors

  EM

0.50  .829
(40)
(.046)

   ---  .836   (40)
(.066)

   ---

0.38  .684
(10)
(.073)

 .790
(.060)

 .622   (10)
(.068)

 .781
(.074)

0.50  .523     (6)
(.096)

 .790
(.069)

 .332
(6)
(.042)

 .730
(.063)

(b)  Training sample of size n = 40 from MVN(µ,Σ) where = ′( , , )0 0 0   and Σ =
− −
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         Modified Likelihood Ratio Test       Test based on )(ˆ
1+nXf

pm Complete
Vectors

  EM Complete
Vectors

  EM

0.00  .666
(40)
(.058)

  __ .672   (40)
(.053)

   __

0.38  .582
(10)
(.059)

 .605
(.059)

.516   (10)
(.070)

 .628
(.074)

0.50  .442     (6)
(.093)

 .613
(.083)

.311
(6)
(.059)

 .606
(.086)
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Table 2.  Empirical detection probabilities using the models fit to the WMQ data

Modified Likelihood Ratio Test

      n = 50                n = 100            n = 150

pm Complete
Vectors EM

Complete
Vectors EM

Complete
Vectors EM

0.00     .950    (50)
   (.057)

---    .968
(100)
  (.049)

---    .955
(150)
  (.052)

---

0.38     .856    (13)
   (.079)

.934
(.088)

   .915
(25)
  (.067)

.956
(.043)

   .932
(38)
  (.057)

.962
(.056)

0.50     .675     (7)
   (.113)

.856
(.076)

   .846
(14)
  (.078)

.945
(.061)

   .894
(21)
  (.055)

.953
(.072)

Test Based on ( )1
ˆ

+nXf

      n = 50                n = 100            n = 150

pm Complete
Vectors EM

Complete
Vectors EM

Complete
Vectors EM

0.00     .939    (50)
   (.059)

---    .959
(100)
  (.065)

---    .962
(150)
  (.041)

---

0.38     .813    (13)
   (.054)

.943
(.084)

   .909
(25)
  (.044)

.947
(.060)

   .922
(38)
  (.060)

.954
(.063)

0.50     .481     (7)
   (.068)

.906
(.093)

   .824
(14)
  (.066)

.948
(.101)

   .883
(21)
  (.063)

.971
(.071)

Table 3.  Detection Results in the Mixture Case Described in the Text

pm Complete Vectors EM
0.00       .922     (50)

     (.043)
---

0.33       .872     (20)
     (.053)

.792
(.049)

0.50       .576     (13)
     (.040)

.722
(.068)


